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1 Introduction

Note, this document is under development. Please look back for updated versions.

This documents describes algorithms to calculate some mathematical constants used by some of the C-
programs in the program package SSPROG. Some timings, benchmarks and references are also given.
The programs are not so fast (much faster programs exist especially for π) but they demonstrates the
principle of multi precision calculations. See also the header of each C-program source code for more
information.

At present algorithms used by the programs sspi, sseln2, ssgamma, ssgam134, sscatal, sszeta3,

sszeta and sspieln2 (in the NUMBERS directory) are described in this document.

The home page of the author and the web page of the program package and this document are found
here:

http://www.spaennare.se/index.html

http://www.spaennare.se/ssprog.html

2 Disclaimer

For all the programs in this package the following statement is valid:

I make no warranties that this program is (1) free of errors, (2) consistent with any standard merchantabil-
ity, or (3) meeting the requirements of a particular application. This software shall not, partly or as a
whole, participate in a process, whose outcome can result in injury to a person or loss of property. It
is solely designed for analytical work. Permission to use, copy, and distribute is hereby granted without
fee, providing that the header above including this notice appears in all copies.

Please report comments and bugs in both the programs and this document to:

E-mail: stefan@spaennare.se

3 General information

The mathematical constants are calculated to desired precision (i.e. n decimal digits). Functions for
multi precision calculations are included in the programs in this package. Especially fast FFT based
multiplication must be used for large numbers. This presentation of the algorithms is quite brief (only
the formulas). To put the constants in a wider context see for example reference [6]. This is the default
reference throughout this document.

The natural logarithm is sometimes denoted log (x) and sometimes ln (x). The author prefers ln (x) which
is used in this document.

A comment regarding the FEE (Fast E-function Evaluation) method for very fast evaluation of transcen-
dental functions (series). The method was invented 1991 by Ekatherina A. Karatsuba, Russia. Another
method called ”divide and conquer” was invented earlier by Anatoly Karatsuba. This method was then
called ”binary splitting” by some people. However, by later years it seems as if ”binary splitting” has
been erroneously taken as a name also for the FEE method by some people preferably in the western
countries. The correct name FEE is used throughout this document. See also references [1], [7] and [8].
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4 Some numerical values

Here are presented numerical values of some mathematical constants to 75 decimal places.

π = 3.141592653589793238462643383279502884197169399375105820974944592307816406286 . . .

e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353 . . .

ln(2) = 0.693147180559945309417232121458176568075500134360255254120680009493393621969 . . .

γ = 0.577215664901532860606512090082402431042159335939923598805767234884867726777 . . .

Γ(1/3) = 2.678938534707747633655692940974677644128689377957301100950428327590417610167 . . .

Γ(1/4) = 3.625609908221908311930685155867672002995167682880065467433377999569919243538 . . .

G = 0.915965594177219015054603514932384110774149374281672134266498119621763019776 . . .

ζ(2) = 1.644934066848226436472415166646025189218949901206798437735558229370007470403 . . .

ζ(3) = 1.202056903159594285399738161511449990764986292340498881792271555341838205786 . . .

ζ(5) = 1.036927755143369926331365486457034168057080919501912811974192677903803589786 . . .

ζ(7) = 1.008349277381922826839797549849796759599863560565238706417283136571601478317 . . .

ζ(10) = 1.000994575127818085337145958900319017006019531564477517257788994636291465151 . . .

ζ(100) = 1.000000000000000000000000000000788860905221011807352053782766041368789625343 . . .

√
2 = 1.414213562373095048801688724209698078569671875376948073176679737990732478462 . . .

√
3 = 1.732050807568877293527446341505872366942805253810380628055806979451933016908 . . .

√
5 = 2.236067977499789696409173668731276235440618359611525724270897245410520925637 . . .

√
7 = 2.645751311064590590501615753639260425710259183082450180368334459201068823230 . . .

√
5+1

2
= 1.618033988749894848204586834365638117720309179805762862135448622705260462818 . . .
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5 Algorithms for π

5.1 π, Borwein’s 4-th order

This algorithm gives four times more digits per iteration.

1. Initial value settings:

a0 = 6 − 4
√

2

y0 =
√

2 − 1

s0 = 8

2. Iterate the following to desired accuracy:

yk+1 =
1 − (1 − y4

k)
1
4

1 + (1 − y4
k)

1
4

ak+1 = ak(1 + yk+1)
4 − skyk+1(1 + yk+1 + y2

k+1)

sk+1 = 4sk

3. π is approximated after n iterations as:

π ≈
1

an

5.2 π, Borwein’s 2-th order

This algorithm gives two times more digits per iteration.

1. Initial value settings:

x0 =
√

2

π0 = 2 +
√

2

y0 = 2
1
4

2. Iterate the following to desired accuracy:

xi+1 =
1

2
(
√

xi +
1

√
xi

)

πi+1 = πi
xi+1 + 1

yi + 1

yi+1 =
yi
√

xi+1 + 1√
xi+1

yi + 1

3. π is approximated after n iterations as:

π ≈ πn
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5.3 π, Gauss-Legendre, AGM

This algorithm of calculating π is based on AGM (Arithmetic Geometric Mean).

This algorithm gives two times more digits per iteration.

1. Initial value settings:

a0 = 1

b0 =
1
√

2

t0 =
1

4

s0 = 1

2. Iterate the following to desired accuracy:

ak+1 =
ak + bk

2
arithmetic mean

bk+1 =
√

akbk geometric mean

tk+1 = tk − sk(ak − ak+1)
2

sk+1 = 2sk

3. π is approximated after n iterations as:

π ≈
(an + bn)2

4tn

5.4 π, Ramanujan series

In 1914 the mathematician S. Ramanujan from India published the following famous series for π:

1

π
=

2
√

2

9801

∞
∑

n=0

(4n)! (1103 + 26390n)

(n!)4 (396)4n

Each term of the series adds about 8 digits to π. The series can be computed very fast to desired precision
using FEE.

5.5 π, Chudnovsky series

In the 1990s David and Gregory Chudnovsky found the following series (of Ramanujan type) for π:

1

π
=

12

C
√

C

∞
∑

n=0

(−1)n (6n)! (A + Bn)

(3n)! (n!)3 (C)3n

Here A = 13591409, B = 545140134 and C = 640320.

Each term of the series adds about 14 digits to π, which is remarkable. The series can be computed very
fast to desired precision using FEE.
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6 Algorithms for ex = exp (x) and e = exp (1)

6.1 ex = exp (x), Newton’s Iteration

exp (x) can be calculated using Newton’s iteration:

yk+1 = yk −
f(yk)

f ′(yk)

If f(y) = ln (y) − x Newton’s iteration for exp (x) is defined by:

yk+1 = yk · (1 + x − ln (yk))

Here y0 should be a good starting value for exp (x). This algorithm gives two times more digits per
iteration.

6.2 e = exp (1), using the series
∑

1/k!

e = exp (1) can be calculated by the series:

e = exp (1) =

∞
∑

k=0

1

k!

By rearranging
∑

1/k!, e = exp(1) can be calculated by the following algorithm (C-like notation):

a=1;

b=0;

for (i=n; i>=1; i--) {

a=a*i;

b=b+a;

} /* for i */

e=b/a;

Here n! is the factorial that fits into the digits of the desired precision. The operations a = a∗ i, b = b+a
and e = b/a are calculated in full precision. The numbers i ≤ n are quite small, which makes the
computation of a = a ∗ i possible in O(n) time as well as b = b + a. Calculation of e = b/a requires
Newton’s iteration and FFT multiplications. This direct way of calculating e = exp (1) is now only of
historical interest because of the slow O(n2) convergence.
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6.3 e = exp (1),
∑

1/k! using FEE

Here is a short description of the very fast FEE (Fast E-function Evaluation) method for calculating
e = exp(1).

Assume we want to calculate:

e = exp (1) =

∞
∑

k=0

1

k!

If we define:

Q(a, b) = (a + 1)(a + 2) · . . . · b

and

P (a, b) = b(b − 1) · . . . · (a + 2) + b(b − 1) · . . . · (a + 3) + . . . + (b − 1)b + b + 1

P (a, b) and Q(a, b) are integers which satisfy:

P (a, b)

Q(a, b)
=

1

a + 1
+

1

(a + 1)(a + 2)
+ . . . +

1

(a + 1)(a + 2) · . . . · b

If K! is the factorial that fits in to the desired number of digits, 1 + P (0, K)/Q(0, K) are the first K
terms of the series

∑

1/k!.

To compute P (0, K) and Q(0, K) using binary splitting calculate the integer part of (a + b)/2:

m = (int)(
a + b

2
)

P (a, b) and Q(a, b) are then computed recursively (multi precision integer operations):

P (a, b) = P (a, m)Q(m, b) + P (m, b)

and

Q(a, b) = Q(a, m)Q(m, b)

These operations can be computed in O(n log (n)
3
) time if FFT multiplication is used. The final (multi

precision floating point) division P (0, K)/Q(0, K) can be computed in O(n log (n)
2
) time using Newton’s

Iteration and FFT multiplication.
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7 Algorithms for ln (x) and ln (2)

7.1 ln (x), AGM

This algorithm of calculating ln (x) is based on AGM (Arithmetic Geometric Mean). The algorithm gives
N digits of ln (x).

This algorithm gives two times more digits per iteration.

Define the iterative procedure R(y) as:

1. Initial value settings:

a0 = 1

b0 =
1

y
10−N/2

t0 = 0

s0 = 1

2. Iterate the following to desired accuracy:

ak+1 =
ak + bk

2
arithmetic mean

bk+1 =
√

akbk geometric mean

tk+1 = tk + sk(a2
k+1 − b2

k+1)

sk+1 = 2sk

3. R(y) is approximated after n iterations as:

R(y) =
1

1

2
− tn

4. Finally ln (x) is approximated as:

ln (x) ≈ R(x) − R(1)

especially:

ln (2) ≈ R(2) − R(1)

9



7.2 ln (2), arctanh(x) based methods

The constant ln (2) can be calculated by many arctanh(x) based series.

The simplest is:

ln (2) = 2 arctanh

(

1

3

)

or one with two terms:

ln (2) = 2 arctanh

(

1

5

)

+ 2 arctanh

(

1

7

)

For numerical calculations the following series are faster:

ln (2) = 18 arctanh

(

1

26

)

− 2 arctanh

(

1

4801

)

+ 8 arctanh

(

1

8749

)

ln (2) = 144 arctanh

(

1

251

)

+ 54 arctanh

(

1

449

)

− 38 arctanh

(

1

4801

)

+ 62 arctanh

(

1

8749

)

ln (2) = 72 arctanh

(

1

127

)

+ 54 arctanh

(

1

449

)

+ 34 arctanh

(

1

4801

)

− 10 arctanh

(

1

8749

)

Each iteration of these series adds about 2.8, 4.8 and 4.2 digits to ln (2) respectively.

By a ”brute force” computer search the author found the following quite fast series:

ln (2) = 6 arctanh

(

1

26

)

+ 8 arctanh

(

1

31

)

+ 10 arctanh

(

1

49

)

ln (2) = 14 arctanh

(

1

31

)

+ 10 arctanh

(

1

49

)

+ 6 arctanh

(

1

161

)

Each iteration of these series adds about 2.8 and 3.0 digits to ln (2) respectively.

In the series above arctanh(x) is given by:

arctanh(x) =
1

2
ln

(

1 + x

1 − x

)

=

∞
∑

k=0

x2k+1

2k + 1

The series can be computed very fast to desired precision using FEE (for rational x).

8 Algorithms for Euler C, γ

Euler C, γ is defined as:

γ = lim
n→∞

(

n
∑

k=1

1

k
− ln (n)

)

However a direct computation is very slow.

The constant can be calculated much faster by a method based on modified Bessel functions:

γ =
AN

BN
− ln (N) + O(e−4N )
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here:

AN =
αN
∑

n=0

(

Nn

n!

)2

Hn ; BN =
αN
∑

n=0

(

Nn

n!

)2

; Hn =
n
∑

k=1

1

k

with α = 3.5911... satisfies α(ln (α) − 1) = 1. The series can be computed very fast to desired precision
using FEE.

By taking into account the error term CN the following (even faster) method can be used:

γ =
AN

BN
−

CN

B2
N

− ln (N) + O(e−8N )

here:

CN =
1

4N

N
∑

n=0

[(2n)!]3

(n!)4 (16N)2n

This time the summation of AN and BN should go up to βN where β = 4.9706... satisfies β(ln (β)−1) = 3.
The series can be computed very fast to desired precision using FEE.

9 Algorithms for Γ(1/3) and Γ(1/4)

9.1 Γ(1/3)

Γ(1/3) can be calculated by the formula:

Γ(1/3) =
π

2
3 2

4
9 3

3
4

3 agm(1, v)
1
3

v =

√
3 − 1

2
√

2

9.2 Γ(1/4)

Γ(1/4) can be calculated by the formula:

Γ(1/4) =
(2π)

3
4

agm(1, v)
1
2

v =
√

2

9.3 AGM

Here agm(a, b) means AGM (Arithmetic Geometric Mean) of a and b and is defined by the following
iteration to desired precision. This algorithm gives two times more digits per iteration.

ak+1 =
ak + bk

2
arithmetic mean

bk+1 =
√

akbk geometric mean
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10 Algorithms for Catalan’s constant G

Catalan’s constant G is defined as:

G =
∞
∑

n=0

(−1)n

(2n + 1)2

However a direct computation is very slow.

The constant can be calculated much faster by accelerated methods. Lupas, see reference [5]:

G =
1

64

∞
∑

n=1

(−1)n−1 28n (40n2 − 24n + 3) [(2n)!]3 (n!)2

n3 (2n − 1) [(4n)!]2

or, see reference [12]:

G = 3

∞
∑

n=0

1

24n

(

−
1

2(8n + 2)2
+

1

22(8n + 3)2
−

1

23(8n + 5)2
+

1

23(8n + 6)2
−

1

24(8n + 7)2
+

1

2(8n + 1)2

)

−

2

∞
∑

n=0

1

212n

(

1

24(8n + 2)2
+

1

26(8n + 3)2
−

1

29(8n + 5)2
−

1

210(8n + 6)2
−

1

212(8n + 7)2
+

1

23(8n + 1)2

)

Each iteration of these series adds about 0.60 and 1.20 digits to G respectively. The series can be
computed very fast to desired precision using FEE.

11 Algorithms for Apery’s constant ζ(3)

Apery’s constant ζ(3) is defined as a special case of the Riemann Zeta function for s = 3:

ζ(3) =
∞
∑

n=1

1

n3
; ζ(s) =

∞
∑

n=1

1

ns

However a direct computation is very slow.

The constant can be calculated much faster by accelerated methods.

ζ(3) =
1

64

∞
∑

n=0

(−1)n (205n2 + 250n + 77) (n!)10

[(2n + 1)!]5

or:

ζ(3) =
1

24

∞
∑

n=0

(−1)n A(n) [(2n + 1)! (2n)! n!]3

(3n + 2)! [(4n + 3)!]3

here:

A(n) = 126392n5 + 412708n4 + 531578n3 + 336367n2 + 104000n + 12463

Each term of these series adds about 3.0 and 5.0 digits to ζ(3) respectively. The series can be computed
very fast to desired precision using FEE.
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12 Algorithms for ζ(s)

The Riemann Zeta function ζ(s) is defined by:

ζ(s) =

∞
∑

n=1

1

ns
=

2s−1

2s−1 − 1

∞
∑

n=1

(−1)n−1

ns

Below are described two accelerated methods to calculate ζ(s) (for integer s ≥ 2).

Method 1 use the alternating series with Cohen-Villegas-Zaiger convergence acceleration and FEE. The
algorithm is outlined below without FEE (C-like notation). The calculations are performed with full
precision (i.e. dec digits). See references [4] and [9] for more details.

N=(int)(1.5728794*dec)+1;

fterm=2*N*N;

fsum=fterm;

gterm=fterm;

gsum=fterm;

for (n=1; n < N; n++) {

temp=(2*(N-n)*(N+n)) / ((2*n+1)*(n+1));

fterm=fterm*temp;

fsum=fsum+fterm;

gterm=gterm*temp;

gterm=gterm+fterm / (((-1)^(n-1))*((n+1)^s));

gsum=gsum+gterm;

} /* for n */

gsum=gsum / (fsum+1);

gsum=(2^(s-1))*gsum / (2^(s-1)-1);

zeta=gsum;
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Method 2 use the alternating series with acceleration through exp(x) and FEE. The algorithm is outlined
below without FEE (C-like notation). The calculations are performed with full precision (i.e. dec digits).
See references [4] and [9] for more details.

x=(int)(2.772592*dec)+1;

N=(int)(exp(1)*x);

fterm=1;

fsum=fterm;

gterm=fterm;

gsum=fterm;

for (n=1; n < N; n++) {

temp=x / n;

fterm=fterm*temp;

fsum=fsum+fterm;

gterm=gterm*temp;

gterm=gterm+fterm / (((-1)^(n-1))*((n+1)^s));

gsum=gsum+gterm;

} /* for n */

gsum=gsum / (fsum+1);

gsum=(2^(s-1))*gsum / (2^(s-1)-1);

zeta=gsum;
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13 Algorithms for inversion, division, square and cube roots

This section describes iterative high order algorithms for calculating 1/v, 1/
√

v, 1/v
1
3 and 1/v

1
4 . The

iteration should always have a good starting value.

13.1 Inversion 1/v and division

Algorithm 1, (Newton’s iteration). Requires two full precision multiplications. This algorithm gives two
times more digits per iteration.

h = 1 − vxk

xk+1 = xk + xkh

Algorithm 2, (cubic convergence). Requires three full precision multiplications. This algorithm gives
three times more digits per iteration.

h = 1 − vxk

xk+1 = xk + xk(h + h2)

Algorithm 3, (quartic convergence). Used for the programs in this package. Requires four full precision
multiplications. This algorithm gives four times more digits per iteration.

h = 1 − vxk

xk+1 = xk + xk(h + h2 + h3)

Division q = w/v can be calculated as:

q =
1

v
w

13.2 1/
√

v and
√

v

Algorithm 1, (Newton’s iteration). Requires three full precision multiplications. This algorithm gives
two times more digits per iteration.

h = 1 − vx2
k

xk+1 = xk +
xk

2
h

Algorithm 2, (cubic convergence). Requires four full precision multiplications. This algorithm gives three
times more digits per iteration.

h = vx2
k

xk+1 =
xk

8
(15 + h(−10 + 3h))

Algorithm 3, (quartic convergence). Requires five full precision multiplications. This algorithm gives four
times more digits per iteration.

h = vx2
k

15



xk+1 =
xk

16
(35 + h(−35 + h(21 − 5h)))

A more efficient way to write this is (used for the programs in this package):

h = 1 − vx2
k

xk+1 = xk +
xk

16
(8h + 6h2 + 5h3)

√
v can then be calculated as:

√
v ≈ vxn

13.3 1/v
1

3 and v
1

3

Algorithm 1, (Newton’s iteration). Requires four full precision multiplications. This algorithm gives two
times more digits per iteration.

h = 1 − vx3
k

xk+1 = xk +
xk

3
h

Algorithm 2, (quartic convergence). Used for for the programs in this package. Requires six full precision
multiplications. This algorithm gives four times more digits per iteration.

h = 1 − vx3
k

xk+1 = xk +
xk

162
(54h + 36h2 + 28h3)

v
1
3 can then be calculated as:

v
1
3 ≈ vx2

n

13.4 1/v
1

4 and v
1

4

Algorithm 1, (Newton’s iteration). Requires four full precision multiplications. This algorithm gives two
times more digits per iteration.

h = 1 − vx4
k

xk+1 = xk +
xk

4
h

Algorithm 2, (quartic convergence). Requires six full precision multiplications. This algorithm gives four
times more digits per iteration.

h = vx4
k

xk+1 =
xk

128
(195 + h(−117 + h(65 − 15h)))

A more efficient way to write this is (used for the programs in this package):

h = 1 − vx4
k

xk+1 = xk +
xk

128
(32h + 20h2 + 15h3)

v
1
4 can then be calculated as:

v
1
4 ≈ vx3

n
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14 Time complexity of algorithms

Full precision calculations with n digits can be performed for some different algorithms with the following
time complexity. Perhaps some factors loglog(n) are missing. NI means Newton’s Iteration (or higher
order methods). FEE means Fast E-function Evaluation. Small multiplication means a multiplication
between a full precision number and a small number that can be stored in a normal (for example integer)
variable.

Algorithm Time complexity
Addition O(n)
Subtraction O(n)
Small multiplication O(n)
FFT multiplication O(n log (n))

Inversion, NI O(n log (n)
2
)

Division, NI O(n log (n)
2
)√

x, NI O(n log (n)
2
)

x
1
3 , NI O(n log (n)2)

x
1
4 , NI O(n log (n)2)

π Borwein’s 4-th order O(n log (n)
3
)

π Borwein’s 2-th order O(n log (n)
3
)

π Gauss Legendre, AGM O(n log (n)
3
)

π Chudnovsky series, FEE O(n log (n)
3
)

π Ramanujan series, FEE O(n log (n)
3
)

exp (1), e =
∑

1/k!, FEE O(n log(n)3)
exp (1), 1/e =

∑

(−1)k/k!, FEE O(n log(n)3)

exp (x), NI (using ln (x) AGM) O(n log (n)
4
)

exp (1), e =
∑

1/k!, direct computation O(n2)

ln (x), AGM O(n log (n)
3
)

ln (2), arctanh(x) based methods, FEE O(n log (n)
3
)

Euler C, γ, FEE O(n log (n)
3
)

Γ(1/3), AGM O(n log (n)3)

Γ(1/4), AGM O(n log (n)
3
)

Catalan, G, FEE O(n log (n)
3
)

Apery’s, ζ(3), FEE O(n log (n)3)

ζ(s), FEE O(n log (n)3)
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15 Accuracy and benchmarks

15.1 Accuracy of calculations

The programs in this package calculate the mathematical constants below to many decimal places. All
printed digits are supposed to be correct. The programs use a very fast FFT (fftsg h.c) by Takuya Ooura
(see reference [10]).

Warning! If you want to calculate more than 224 (about 16 million) digits set the constant mulversion
= 2 in the file ”mulver.txt” to avoid errors in the FFT multiplication. At least this must be done if ”FFT
max error” > 0.25. This makes the programs two times slower and requires more memory.

15.2 Benchmarks

Some other good web-pages about benchmarks of mathematical constants are found in references [13]
and [14].

In these benchmarks the FFT multiplication variable (mulversion) was set to 1 (i.e. fastest method).

15.2.1 Information about the computer used for benchmarks

The CPU-times are given for an Intel Celeron computer at 1400 MHz measured with the ”time” function
in Linux. The computer has 512 Mbyte SDRAM memory and 100 MHz memory bus. The cache memory
is 256 kbyte (Advanced Transfer) at full CPU speed. The operating system was Red Hat 9 Linux with
the gcc 3.2.2 C-compiler. The CPU load was on average 1.00 (i.e. no other programs running). The
programs were compiled using the line:

>gcc -O3 -o program program.c fftsg h.c -lm

15.2.2 Benchmarks with the program sspi

Intel Celeron 1400 MHz Digits CPU-time CPU-time CPU-time Max memory
Algorithm verified 217 digits 220 digits 224 digits per 220 digits
π, Chudnovsky 224 3.78 s 57.26 s 1533.77 s 13.4 Mbyte
π, Ramanujan 224 5.81 s 72.26 s 2449.46 s 13.4 Mbyte

15.2.3 Benchmarks with the program sseln2

Intel Celeron 1400 MHz Digits CPU-time CPU-time Max memory
Algorithm verified 217 digits 220 digits per 220 digits
e = exp (1), method 1 220 1.99 s 21.04 s 12.8 Mbyte
e = exp (1), method 2 220 2.38 s 26.45 s 12.8 Mbyte
ln (2), method 3 220 19.17 s 253.59 s 16.0 Mbyte
ln (2), method 4 220 21.44 s 276.08 s 16.0 Mbyte
ln (2), method 5 220 23.51 s 309.69 s 16.0 Mbyte
ln (2), method 6 220 19.54 s 244.00 s 16.0 Mbyte
ln (2), method 7 220 19.61 s 259.85 s 16.0 Mbyte

15.2.4 Benchmarks with the program ssgamma

Intel Celeron 1400 MHz Digits CPU-time CPU-time Max memory
Algorithm verified 217 digits 220 digits per 220 digits
Euler C, γ, method 1 220 119.19 s 1607.36 s 36.4 Mbyte
Euler C, γ, method 2 220 104.01 s 1561.67 s 36.4 Mbyte
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15.2.5 Benchmarks with the program ssgam134

Intel Celeron 1400 MHz Digits CPU-time CPU-time Max memory
Algorithm verified 217 digits 220 digits per 220 digits
Γ(1/3) 220 34.06 s 433.33 s 14.9 Mbyte
Γ(1/4) 220 26.44 s 347.41 s 14.4 Mbyte

15.2.6 Benchmarks with the program sscatal

Note, this program was run under Fedora Core 1 Linux and the gcc 3.3.2 compiler.

Intel Celeron 1400 MHz Digits CPU-time CPU-time Max memory
Algorithm verified 217 digits 220 digits per 220 digits
Catalan G, method 1 220 188.43 s 2948.54 s 29.6 Mbyte
Catalan G, method 2 220 241.99 s 3431.92 s 19.7 Mbyte

15.2.7 Benchmarks with the program sszeta3

Intel Celeron 1400 MHz Digits CPU-time CPU-time Max memory
Algorithm verified 217 digits 220 digits per 220 digits
Apery’s ζ(3), method 1 220 21.97 s 386.66 s 19.7 Mbyte
Apery’s ζ(3), method 2 220 17.29 s 341.97 s 21.8 Mbyte

15.2.8 Benchmarks with the program sszeta

Intel Celeron 1400 MHz Digits CPU-time CPU-time Max memory
Algorithm verified 217 digits 220 digits per 220 digits
ζ(3), method 1 220 121.19 s 1739.45 s 36.4 Mbyte
ζ(3), method 2 220 494.86 s 6825.30 s 36.4 Mbyte
ζ(10), method 1 220 227.76 s 3328.41 s 36.4 Mbyte
ζ(10), method 2 220 942.43 s 16713.07 s 36.4 Mbyte
ζ(100), method 1 220 1309.66 s 19457.07 s 36.4 Mbyte
ζ(100), method 2 220 8060.97 s — s 36.4 Mbyte

15.2.9 Benchmarks with the program sspieln2

Intel Celeron 1400 MHz Digits CPU-time CPU-time Max memory
Algorithm verified 217 digits 220 digits per 220 digits
π, Borwein’s 4-th order 220 26.89 s 382.24 s 13.4 Mbyte
π, Borwein’s 2-th order 220 32.91 s 372.56 s 14.9 Mbyte
π, Gauss Legendre, AGM 220 22.92 s 289.99 s 13.4 Mbyte
exp (1), e =

∑

1/k! 220 24.87 s 1922.04 s 12.8 Mbyte
exp (1), Newton’s Iteration 220 731.08 s — s 33.8 Mbyte
ln (2), AGM 220 102.31 s 1287.43 s 30.8 Mbyte

Golden Section= (
√

5 + 1)/2 220 1.11 s 12.11 s 11.8 Mbyte√
2 220 0.99 s 9.45 s 11.3 Mbyte
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